Tutorial: JSONL Incremental Parser
Build a high-performance streaming JSON Lines parser using synkit’s incremental parsing infrastructure.
Source Code
📦 Complete source: examples/jsonl-parser
What You’ll Learn
- ChunkBoundary - Define where to split token streams
- IncrementalLexer - Buffer partial input, emit complete tokens
- IncrementalParse - Parse from token buffers with checkpoints
- Async streaming - tokio and futures integration
- Stress testing - Validate memory stability under load
JSON Lines Format
JSON Lines uses newline-delimited JSON:
{"user": "alice", "action": "login"}
{"user": "bob", "action": "purchase", "amount": 42.50}
{"user": "alice", "action": "logout"}
Each line is a complete JSON value. This makes JSONL ideal for:
- Log processing
- Event streams
- Large dataset processing
- Network protocols
Why Incremental Parsing?
Traditional parsing loads entire input into memory:
let input = fs::read_to_string("10gb_logs.jsonl")?; // ❌ OOM
let docs: Vec<Log> = parse(&input)?;
Incremental parsing processes chunks:
let mut lexer = JsonIncrementalLexer::new();
while let Some(chunk) = reader.read_chunk().await {
for token in lexer.feed(&chunk)? {
// Process tokens as they arrive
}
}
Prerequisites
- Completed the TOML Parser Tutorial (or familiarity with synkit basics)
- Understanding of async Rust (for chapters 5-6)
Chapters
| Chapter | Topic | Key Concepts |
|---|---|---|
| 1. Token Definition | Token enum and parser_kit! | logos patterns, #[no_to_tokens] |
| 2. Chunk Boundaries | ChunkBoundary trait | depth tracking, boundary detection |
| 3. Incremental Lexer | IncrementalLexer trait | buffering, offset tracking |
| 4. Incremental Parse | IncrementalParse trait | checkpoints, partial results |
| 5. Async Streaming | tokio/futures integration | channels, backpressure |
| 6. Stress Testing | Memory stability | 1M+ events, leak detection |